1,959 research outputs found

    Stochastic Acceleration in Relativistic Parallel Shocks

    Full text link
    (abridged) We present results of test-particle simulations on both the first and the second order Fermi acceleration at relativistic parallel shock waves. We consider two scenarios for particle injection: (i) particles injected at the shock front, then accelerated at the shock by the first order mechanism and subsequently by the stochastic process in the downstream region; and (ii) particles injected uniformly throughout the downstream region to the stochastic process. We show that regardless of the injection scenario, depending on the magnetic field strength, plasma composition, and the employed turbulence model, the stochastic mechanism can have considerable effects on the particle spectrum on temporal and spatial scales too short to be resolved in extragalactic jets. Stochastic acceleration is shown to be able to produce spectra that are significantly flatter than the limiting case of particle energy spectral index -1 of the first order mechanism. Our study also reveals a possibility of re-acceleration of the stochastically accelerated spectrum at the shock, as particles at high energies become more and more mobile as their mean free path increases with energy. Our findings suggest that the role of the second order mechanism in the turbulent downstream of a relativistic shock with respect to the first order mechanism at the shock front has been underestimated in the past, and that the second order mechanism may have significant effects on the form of the particle spectra and its evolution.Comment: 14 pages, 11 figures (9 black/white and 2 color postscripts). To be published in the ApJ (accepted 6 Nov 2004

    The Influence of Number Magnitude on Vocal Responses

    Get PDF
    The study investigated whether number magnitude can influence vocal responses. Participants produced either short or long version of the vowel [&] (Experiment 1), or high or low-pitched version of that vowel (Experiment 2), according to the parity of a visually presented number. In addition to measuring reaction times (RT) of vocal responses, we measured the intensity, the fundamental frequency (f(0)) and the first and second formants of the vocalization. The RTs showed that the long and high-pitched vocal responses were associated with large numbers, while short and low-pitched vocal responses were associated with small numbers. It was also found that high-pitched vocalizations were mapped with the odd numbers, while the low-pitched vocalizations were mapped with the even numbers. Finally, large numbers increased the f(0) values. The study shows systematic interactions between the processes that represent number magnitude and produce vocal responses.Peer reviewe

    Conversion of relativistic pair energy into radiation in the jets of active galactic nuclei

    Get PDF
    It is generally accepted that relativistic jet outflows power the nonthermal emission from active galactic nuclei (AGN). The composition of these jets -- leptonic versus hadronic -- is still under debate. We investigate the microphysical details of the conversion process of the kinetic energy in collimated relativistic pair outflows into radiation through interactions with the ambient interstellar medium. Viewed from the coordinate system comoving with the pair outflow, the interstellar protons and electrons represent a proton-electron beam propagating with relativistic speed in the pair plasma. We demonstrate that the beam excites both electrostatic and low-frequency magnetohydrodynamic Alfven-type waves via a two-stream instability in the pair background plasma, and we calculate the time evolution of the distribution functions of the beam particles and the generated plasma wave turbulence power spectra. For standard AGN jet outflow and environment parameters we show that the initial beam distributions of interstellar protons and electrons quickly relax to plateau-distributions in parallel momentum, transferring thereby one-half of the initial energy density of the beam particles to electric field fluctuations of the generated electrostatic turbulence. On considerably longer time scales, the plateaued interstellar electrons and protons will isotropise by their self-generated transverse turbulence and thus be picked-up in the outflow pair plasma. These longer time scales are also characteristic for the development of transverse hydromagnetic turbulence from the plateaued electrons and protons. This hydromagnetic turbulence upstream and downstream is crucial for diffusive shock acceleration to operate at external or internal shocks associated with pair outflows.Comment: A&A in pres

    Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Get PDF
    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν41+ν51\nu_1+\nu_2+\nu_3+\nu_4^1+\nu_5^{-1} in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm1\text{cm}^{-1}, the rotational parameter BB was 1.162222 cm1\text{cm}^{-1}, and the quartic centrifugal distortion parameter DD was 3.998(62)×106cm1\times 10^{-6} \text{cm}^{-1}, where the numbers in the parenthesis are one-standard errors in the least significant digits

    Particle scattering in turbulent plasmas with amplified wave modes

    Get PDF
    High-energy particles stream during coronal mass ejections or flares through the plasma of the solar wind. This causes instabilities, which lead to wave growth at specific resonant wave numbers, especially within shock regions. These amplified wave modes influence the turbulent scattering process significantly. In this paper, results of particle transport and scattering in turbulent plasmas with excited wave modes are presented. The method used is a hybrid simulation code, which treats the heliospheric turbulence by an incompressible magnetohydrodynamic approach separately from a kinetic particle description. Furthermore, a semi-analytical model using quasilinear theory (QLT) is compared to the numerical results. This paper aims at a more fundamental understanding and interpretation of the pitch-angle scattering coefficients. Our calculations show a good agreement of particle simulations and the QLT for broad-band turbulent spectra; for higher turbulence levels and particle beam driven plasmas, the QLT approximation gets worse. Especially the resonance gap at μ = 0 poses a well-known problem for QLT for steep turbulence spectra, whereas test-particle computations show no problems for the particles to scatter across this region. The reason is that the sharp resonant wave-particle interactions in QLT are an oversimplification of the broader resonances in test-particle calculations, which result from nonlinear effects not included in the QLT. We emphasise the importance of these results for both numerical simulations and analytical particle transport approaches, especially the validity of the QLT. Appendices A-D are available in electronic form at http://www.aanda.or

    Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity

    Get PDF
    Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims. We present an analysis of the injection efficiency at coronal shocks of varying obliquity.We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods. Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results. We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the crossshock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions. Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry

    Congruency effect between articulation and grasping in native English speakers

    Get PDF
    Previous studies have shown congruency effects between specific speech articulations and manual grasping actions. For example, uttering the syllable [kɑ] facilitates power grip responses in terms of reaction time and response accuracy. A similar association of the syllable [ti] with precision grip has also been observed. As these congruency effects have been to date shown only for Finnish native speakers, this study explored whether the congruency effects generalize to native speakers of another language. The original experiments were therefore replicated with English participants (N=16). Several previous findings were reproduced, namely the association of syllables [kɑ] and [ke] with power grip and of [ti] and [te] with precision grip. However, the association of vowels [ɑ] and [i] with power and precision grip, respectively, previously found for Finnish participants, was not significant for English speakers. This difference could be related to ambiguities of English orthography and pronunciation variations. It is possible that for English speakers seeing a certain written vowel activates several different phonological representations associated with that letter. If the congruency effects are based on interactions between specific phonological representations and grasp actions, this ambiguity might lead to weakening of the effects in the manner demonstrated here
    corecore